167 research outputs found

    Coalition-structured governance improves cooperation to provide public goods

    Get PDF
    While the benefits of common and public goods are shared, they tend to be scarce when contributions are provided voluntarily. Failure to cooperate in the provision or preservation of these goods is fundamental to sustainability challenges, ranging from local fisheries to global climate change. In the real world, such cooperative dilemmas occur in multiple interactions with complex strategic interests and frequently without full information. We argue that voluntary cooperation enabled across overlapping coalitions (akin to polycentricity) not only facilitates a higher generation of non-excludable public goods, but it may also allow evolution toward a more cooperative, stable, and inclusive approach to governance. Contrary to any previous study, we show that these merits of multi-coalition governance are far more general than the singular examples occurring in the literature, and they are robust under diverse conditions of excludability, congestion of the non-excludable public good, and arbitrary shapes of the return-to-contribution function. We first confirm the intuition that a single coalition without enforcement and with players pursuing their self-interest without knowledge of returns to contribution is prone to cooperative failure. Next, we demonstrate that the same pessimistic model but with a multi-coalition structure of governance experiences relatively higher cooperation by enabling recognition of marginal gains of cooperation in the game at stake. In the absence of enforcement, public-goods regimes that evolve through a proliferation of voluntary cooperative forums can maintain and increase cooperation more successfully than singular, inclusive regimes.Supported by US Defense Advanced Research Projects Agency (D17AC00005), National Science Foundation grant GEO-1211972, and Fundacao para a Ciencia e Tecnologia (FCT) through grants PTDC/MAT/STA/3358/2014, PTDC/EEI-SII/5081/2014, and UID/BIA/04050/2013. P.M.H. was supported by the Walbridge Fund at the Princeton Environmental Institute

    Acute effects of intracranial hypertension and ARDS on pulmonary and neuronal damage: a randomized experimental study in pigs

    Get PDF
    Abstract PURPOSE: To determine reciprocal and synergistic effects of acute intracranial hypertension and ARDS on neuronal and pulmonary damage and to define possible mechanisms. METHODS: Twenty-eight mechanically ventilated pigs were randomized to four groups of seven each: control; acute intracranial hypertension (AICH); acute respiratory distress syndrome (ARDS); acute respiratory distress syndrome in combination with acute intracranial hypertension (ARDS + AICH). AICH was induced with an intracranial balloon catheter and the inflation volume was adjusted to keep intracranial pressure (ICP) at 30-40 cmH2O. ARDS was induced by oleic acid infusion. Respiratory function, hemodynamics, extravascular lung water index (ELWI), lung and brain computed tomography (CT) scans, as well as inflammatory mediators, S100B, and neuronal serum enolase (NSE) were measured over a 4-h period. Lung and brain tissue were collected and examined at the end of the experiment. RESULTS: In both healthy and injured lungs, AICH caused increases in NSE and TNF-alpha plasma concentrations, extravascular lung water, and lung density in CT, the extent of poorly aerated (dystelectatic) and atelectatic lung regions, and an increase in the brain tissue water content. ARDS and AICH in combination induced damage in the hippocampus and decreased density in brain CT. CONCLUSIONS: AICH induces lung injury and also exacerbates pre-existing damage. Increased extravascular lung water is an early marker. ARDS has a detrimental effect on the brain and acts synergistically with intracranial hypertension to cause histological hippocampal damage

    Srf1 Is a Novel Regulator of Phospholipase D Activity and Is Essential to Buffer the Toxic Effects of C16:0 Platelet Activating Factor

    Get PDF
    During Alzheimer's Disease, sustained exposure to amyloid-β42 oligomers perturbs metabolism of ether-linked glycerophospholipids defined by a saturated 16 carbon chain at the sn-1 position. The intraneuronal accumulation of 1-O-hexadecyl-2-acetyl-sn-glycerophosphocholine (C16:0 PAF), but not its immediate precursor 1-O-hexadecyl-sn-glycerophosphocholine (C16:0 lyso-PAF), participates in signaling tau hyperphosphorylation and compromises neuronal viability. As C16:0 PAF is a naturally occurring lipid involved in cellular signaling, it is likely that mechanisms exist to protect cells against its toxic effects. Here, we utilized a chemical genomic approach to identify key processes specific for regulating the sensitivity of Saccharomyces cerevisiae to alkyacylglycerophosphocholines elevated in Alzheimer's Disease. We identified ten deletion mutants that were hypersensitive to C16:0 PAF and five deletion mutants that were hypersensitive to C16:0 lyso-PAF. Deletion of YDL133w, a previously uncharacterized gene which we have renamed SRF1 (Spo14 Regulatory Factor 1), resulted in the greatest differential sensitivity to C16:0 PAF over C16:0 lyso-PAF. We demonstrate that Srf1 physically interacts with Spo14, yeast phospholipase D (PLD), and is essential for PLD catalytic activity in mitotic cells. Though C16:0 PAF treatment does not impact hydrolysis of phosphatidylcholine in yeast, C16:0 PAF does promote delocalization of GFP-Spo14 and phosphatidic acid from the cell periphery. Furthermore, we demonstrate that, similar to yeast cells, PLD activity is required to protect mammalian neural cells from C16:0 PAF. Together, these findings implicate PLD as a potential neuroprotective target capable of ameliorating disruptions in lipid metabolism in response to accumulating oligomeric amyloid-β42

    How to enhance the agronomic performance of cactus-sorghum intercropped system: planting configurations, density and orientation.

    Get PDF
    Clarifying cultivation techniques and making production systems more efficient are practices that have been much sought after in agricultural systems in recent decades. In this context, the forage yield, biological efficiency, and competitive ability, of different cultivation strategies for intercropping forage cactus and sorghum were determined in biosaline production systems from 2018 to 2020 in Brazil. Four experiments were carried out, comprising: 1) cropping configurations for the forage cactus-sorghum intercropping system; 2 and 3) planting densities for the forage cactus intercropped with sorghum with an east-west and north-south row orientation, respectively; and 4) planting densities for the forage cactus and sorghum. Each experiment used a randomised block design with four replications. The intercropped forage cactus and sorghum showed higher productivity than the monocropped systems. The indices of biological efficiency (LER, ATER, LEC and SPI with mean values equal to 1.6, 1.8, 0.6 and 29.0, respectively) and competitive ability (ALGY in average 870.6) show better performance under the intercropped system compared to the single crops. The increased planting density resulted in an increase in productivity under the intercropped forage cactus-sorghum system (on average an increase of 69.4% dry matter). In turn, the orientation had no influence on the productivity of the intercropping system but offered better conditions for the forage cactus when cultivation was in an east-west direction (21.7 Mg ha􀀀 1 of dry matter) compared to north-south (17.5 Mg ha􀀀 1 of dry matter). Intercropping forage cactus and sorghum using biosaline agriculture is an excellent alternative for a production system in semi-arid environments, especially at higher planting densities (50,000 and 100,000 plants ha􀀀 1)

    In Vitro and In Vivo Activity of a Palladacycle Complex on Leishmania (Leishmania) amazonensis

    Get PDF
    Leishmaniasis is an important public health problem with an estimated annual incidence of 1.5 million of new human cases of cutaneous leishmaniasis and 500,000 of visceral leishmaniasis. Treatment of the diseases is limited by toxicity and parasite resistance to the drugs currently in use, validating the need to develop new leishmanicidal compounds. We evaluated the killing by the palladacycle complex DPPE 1.2 of Leishmania (Leishmania) amazonensis, an agent of human cutaneous leishmaniasis in the Amazon region, Brazil. DPPE 1.2 destroyed promastigotes of L. (L.) amazonensis in vitro at nanomolar concentrations, whereas intracellular amastigotes were killed at drug concentrations 10-fold less toxic than those displayed to macrophages. L. (L.) amazonensis-infected BALB/c mice treated by intralesional injection of DPPE 1.2 exhibited a significant decrease of foot lesion sizes and a 97% reduction of parasite burdens when compared to untreated controls. Additional experiments indicated the inhibition of the cathepsin B activity of L. (L.) amazonensis amastigotes by DPPE 1.2. Further studies are needed to explore the potential of DPPE 1.2 as an additional option for the chemotherapy of leishmaniasis

    Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Leishmania (Viannia) shawi </it>parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from <it>L. (V.) shawi </it>promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained.</p> <p>Methods</p> <p>F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated.</p> <p>Results</p> <p>The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8<sup>+</sup>T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4<sup>+ </sup>central memory T lymphocytes and activation of both CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells. In addition, F1-immunized groups showed an increase in IgG2a levels.</p> <p>Conclusions</p> <p>The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.</p
    corecore